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Motion of a material point of variable mass in a central force field in the pres- 
ence of a perturbing force is considered. The solution of the problem is obtained 

in quadratures. 

1. We consider a motion of a material point of variable mass in a central perturbing 
field obeying the following law 

P(r) = Xmr-” (1.1) 

where h. and n are the constant field characteristics (when n = 2 and h. < 0 , we have 
the case of a Newtonian gravitational field), m is the mass of the material point and r 

is its distance from the center. 
We assume that the mass of the point is a continuously differentiable function of its 

distance from the center 

m = mof (4, r = r (t) (m = m,, r = 70, for t = 0) (1.2) 

and we also assume that 

u = p(r) Y (1.3j 

where v is the velocity of motion of the point in the inertial frame of reference, u is 
the velocity of the particles rejected (or assimilated) by the parent point up to the given 

instant and p(r) is a specified continuous function. Then the reaction force can be written 
as R (r) = m0r 1’ (r) g (r) v, g Pi = P (4 - 1 (1.4) 

iYhere a dot denotes derivative with respect to ttme and a prime, with respect to r. 
We assume that in addition to the forces given, a perturbing force F* lying in the plane 
of the trajectory and orthogonal to the vector v is also acting on the point. An analogous 
problem of motion of a point of constant mass was studied in [l], where it was shown 
that if 1“* = moF (Tj U) (1.5) 

then the problem can be reduced to quadratures. We shall show that this remains true 
for the case of a point of variable mass. 

Equations of plane motion of a point under the conditions (1.1) - (1.3) have the follow- 
ing form in the polar coordinates: 

I’ 
r (ST’)’ = L F’F + - gr’r’cp’ 

I f 
(i.6) 
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Let us find the solution of (1.6) for initial conditions 

Eliminating F we obtain 

and this yields the energy integral 

The second equation of (1.6) can be written as 

r H (4 (r“Cp’)’ - g f (&p’) = f G 

H(r) = F (r, G (r)) 

and this gives the expression analogous to an area integral 

(1.10) 

Eliminating q~ and the relation for v, we obtain 

The integral (I. 11) exists for any continuous smooth trajectories except the circular 

ones. The signs C.J and A are chosen with regard to the initial conditions and to the cha- 
racter of the field. 

From the integrals (1.10) and (1.11) we obtain 
P 

cp (r) = rpo + 5 5 @r-l (GW - W)+dr (L12) 

r* 

The values of rl and rz for which zt, = 0 are poles of the integrand functions in (1.12) 
and (1.11). The motion of the point takes place, in general, within the annulus r, < r < 
< r, and the case in which r, -f m [13 is possible. The equations (1.11) and (1.12) 

determine the law of the plane motion of a point of variable mass. 

2. We assume that the function of mass flow 

m’ = moq (t), P1ftfdl TPW (2.f) 

continuous for all 8 is specified. Then, using the relations fl.2) and (1.11) we obtain 

f (r) =i +a J qr (G”r2 - 4J2)-‘kr 

f* 
(2.a 

Here the sign of u determines two modes of the change in mass, the flow and the addi- 
tion. 

Using rhe results obtained we can solve the problem of determining the law governing 
the mass change employirg the prescribed manner of variation of the modulus of its 
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velocity given as a function of its distance from the center 

From (1.8) we have 
V’ = S(F) (2.3) 

P 

(2.4) 

If the program of variatron m me sectorial velocity am the radial velocity component 
of the point 

r”‘p’ = k (F), . VT = iI (F) (2.5) 

are both specified then (1.8) yields the law of mass change in the form 

j (F) = exp 1 $ (r) dr 

rD 

(2.l;) 

If on the other hand the relation (2.3) and the first relation of (2.5) both hold, then the 
function of mass change is 

II* (F) = F (F, I/,(r,] (2.7) 

When p(r) = const,Eq. (2.6) exists only for the values of P # 1. 
The relationshrps determining the solution of the converse problem are of interest: 

given the characteristic functions G (F) and Q, (F) of the motion of the point, to find the 

perturbind forces. From (1.10) we find 

r’ = f F-‘/l (F), A (r) = (rW - cD~)‘/~ 

Defining the quantity F , we obtain from the first equation of (1.6) 

F~=lF~,~(~j_~(~)_~-AZ_~]~ (2.8) 

Similarly, the second equation of (1.6) yields 

(2.9) 

Formulas (2.8) and (2.9) represent the generalized analogs of the Binet formulas in the 

theory of central motion of a point. Here the function f(r) is specified. 
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